

SEMESTER I

THEORY

TITLE OF COURSE	DESCRIPTIVE STATISTICS AND PROBABILITY THEORY			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	DATA TABULATION AND MEASURES OF CENTRAL TENDENCY	1	
	II	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS	1	3
	III	ELEMENTARY PROBABILITY THEORY & RANDOM VARIABLES	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	DESCRIPTIVE STATISTICS AND PROBABILITY THEORY	2	1

SEMESTER II

THEORY

TITLE OF COURSE	DISTRIBUTION THEORY AND ESTIMATION			
COURSE CODE	UNIT	TOPICS	LECTURES/ WEEK	CREDITS
	Ι	STANDARD DISCRETE DISTRIBUTIONS	1	
	II	STANDARD CONTINUOUS DISTRIBUTIONS	1	3
	III	ELEMENTARY TOPICS ON ESTIMATION & TESTING OF HYPOTHESIS	1	

PRACTICAL

COURSE CODE	PRACTICALS BASED ON	LECTURES/ WEEK	CREDITS
	DISTRIBUTION THEORY AND ESTIMATION	2	2

SYLLABUS FOR F.Y.B.Sc. UNDER AUTONOMY SEMESTER I

- To be well versed with data collection techniques.
- To effectively use data visualization and summarization techniques to understand data.
- To understand the concepts of probability and random variable.

Course Code	Title	Credits
	DESCRIPTIVE STATISTICS AND PROBABILITY THEORY	3 Credits
TENDEN		15 Lecture
sectiondata	ata: Qualitative and Quantitative data, Time series data and cross a, discrete and continuous data. Different types of scales: nominal, terval, and ratio. Experimental and observational data.	
demerits. S	f population and sample. Census and Sample survey. Relative merits and Statistical Organizations and their functions (CSO, NSSO). Survey rimary data: Concept of a questionnaire and a schedule. Secondary data:	
	es illustrating use of Statistics in different sectors. Bar diagrams, Pie diagram.	
frequency Histogram diagram. C tendency. Mathemati	frequency distribution of discrete and continuous variables. Cumulative distribution. Graphical representation of frequency distribution by , Frequency curve, Cumulative frequency curves, Stem and leaf Central tendency of data. Requisites of a good measure of central Positionalaverages: Median, Mode, Partition Values: Quantiles. An averages: Arithmetic mean (Simple mean, trimmed mean, weighted abined mean), Geometric mean, Harmonic mean. Merits and demerits of measures.	
Concept of Absolute n	MEASURES OF DISPERSION, SKEWNESS & KURTOSIS f dispersion. Requisites of good measure of dispersion. neasures of dispersion: Range, Quartile Deviation, Mean absolute Standard deviation, and corresponding relative measures of dispersion.	15 Lecture
Raw & Ce Concept of	ntral moments and relationship between them. f Skewness and Kurtosis: Absolute and Relative measures of Skewness: on's, Bowley's and Measure based on moments. Measure of Kurtosis	
basedon m	oments.	

UNIT III: ELEMENTARY PROBABILITY THEORY & RANDOM VARIABLES	15 Lectures
Random experiment, Sample space, Event, Operation of events, mutually exclusive and exhaustive events. Classical (Mathematical), Empirical (Statistical), definitions of Probability and their properties. Subjective probability.	
Theorems on Addition and Multiplication of probabilities.	
Independence of events, pairwise and mutual independence of three events. Conditional probability, Bayes' theorem. Concept of discrete & continuous random variables: Probability distribution and cumulative distribution function, definition, and their properties.	
Expectation of a random variable. Theorems on Expectation & Variance.	
Raw and Central moments and their relationships (up to order four).	
Concepts of Skewness and Kurtosis.	

SEMESTER I: PRACTICALS

SYLLABUS FOR F.Y. BSc. UNDER AUTONOMY

SEMESTER II

Objectives:

- To study the concept and properties of standard discrete and continuous distribution.
- To understand theory of estimation and testing of hypothesis

Course Code	Title	Credits
	DISTRIBUTION THEORY AND ESTIMATION	2 Credits (45 lectures)
UNIT I:	STANDARD DISCRETE DISTRIBUTIONS	15 Lectures
Joint (Bivariate) probability distribution of two discrete & continuous random variables. Marginal and conditional distributions. Coefficient of Correlation. Independence of two random variables for both discrete and continuous random variables.		
	Discrete Uniform, Hypergeometric, Binomial and Poisson distributions: mean, variance and recurrence relation for probability, fitting of distribution.	
Binomia	l approximation to Hypergeometric distribution. Poisson approximation to l distribution.	
	: STANDARD CONTINUOUS DISTRIBUTIONS	15 Lectures
Uniform, Exponential (with location, scale parameter), Gamma distribution, Beta		
type 1, Beta type 2 and Normal distribution. Derivations of mean, median and variance of Uniform, Exponential distribution, Gamma distribution, Beta type 1,		
Beta type 2. Lack of memory property of exponential distribution.		
	es of Normal distribution. Use of normal tables. Normal approximation to 1 and Poisson distribution.	
UNIT II HYPOT	I: ELEMENTARY TOPICS ON ESTIMATION & TESTING OF HESIS	15 Lectures
Paramete	er, statistic, estimator and estimate, sampling distribution, bias and	
standard	error of an estimator. Central Limit theorem (statement only).	
Sampling distributions of sample mean and sample proportion. (For large sample only) Point and Interval estimate of mean and proportion based on single sample of		
large size and difference between two means and proportions based on large		
sample sizes. Null and alternate hypotheses, Simple and composite hypothesis.		
Type I and II errors, Critical region, Size of the test, Level of significance. Power		
	st. Applications of Normal Distribution: Tests for specified value of	
population	on mean and population proportion. Tests for equality of two population nd population proportions.	

SEMESTER II: PRACTICALS

1. Bivariate probability distributions
2. Standard Discrete Distributions
3. Standard Continuous distributions
4. Normal Distribution and Central Limit Theorem
5. Point and Interval Estimation
6. Estimation
7. Testing of Hypothesis
8. Large Sample Test

EVALUATION PATTERN:

33 to 55% continuous internal evaluation and remaining at the end of each semester.

REFERENCES:

- 1. Agarwal B.L. (1978). Basic Statistics: New Age International Ltd.
- 2. David S.(1994). *Elementary Probability* : Cambridge University Press.
- Goon A.M., Gupta M.K.& Dasgupta B. (1968). *Fundamentals of Statistics*, Volume II: The World Press Private Limited, Calcutta.
- 4. Gupta S.C.& Kapoor V.K.(2007). Fundamentals of Mathematical Statistics: Sultan Chand & Sons
- 5. Gupta S.C.& Kapoor V.K.(2014). Fundamentals of Applied Statistics: Sultan Chand & Sons
- 6. Hoel P.G.(1947). Introduction to Mathematical Statistics: Asia Publishing House
- 7. Hogg R.V. & Tannis E.P.(1977). Probability and Statistical Inference: McMillan Publishing Co. Inc.
- 8. Kothari C.R.(1985). Research Methodology: Wiley Eastern Limited.
- 9. Medhi, J. (2013). Statistical Methods, An Introductory Text. Second Edition: New Age International Ltd.
- 10. Pitan Jim. (1977) . Probability: Narosa Publishing House.
- 11. Spiegel M.R. (1961). Theory and Problems of Statistics. Schaum's Publications series: Tata McGraw-Hill